UNIVERSITA COMMERCIALE “LUIGI BOCCONI”

Bachelor of Science in Economics, Management and Computer Science

Bayesian Learning: Clustering with the Dirichlet
Process Mixture Model

Supervisor:
Prof. ANTONIO LIJOI

Candidate:

LUIGI NOTO
3075187

Academic Year 2020 - 2021









Contents

Introduction 3

1 Background 5

1.1 Bayesian Nonparametrics . . . . . . . . . ... ... Lo )

1.2 Clustering and the issue of the number of clusters . . . . . . . ... .. .. 6

1.3 Dirichlet distribution . . . . . . . .. ... o 9
1.4 Random probability measures, exchangeability and de Finetti’s represen-

tation theorem . . . . . . . ... 10

1.5 Dirichlet process . . . . . . . .. 12

1.6 Markov chain Monte Carlo . . . . . . . . .. . ... ... ... .. ..... 16

2 Clustering with the DP mixture model 21

2.1 Dirichlet process mixture model . . . . . . . . . ... ... L. 21

2.2 Clustering property of the DPMM . . . . . ... .. ... ... ... ... 23

2.3 Posterior inference for the DPMM . . . . .. .. ... ... ... 26

2.4 Application: customer segmentation . . . . ... ... 28

Conclusions 37

Bibliography 39






Introduction

The purpose of this final paper is to explore Bayesian nonparametrics and its application
to clustering, by means of the Dirichlet process mixture model (DPMM).

Bayesian nonparametric models are a class of models with a potentially infinite number
of parameters. This property allows a higher modeling flexibility than with parametric
models, making them particularly attractive for numerous applications where the under-
lying structure of the data is not known or is assumed to grow as more data are observed.
In fact, because of their infinite-dimensional parameterization, these models incorporate
the uncertainty about the appropriate model complexity to adopt for the observed data,
thereby automatically addressing the problem of model selection when performing pos-
terior inference. Hence, the analysis does not rely on heuristic methods as it is the case
when using models with a finite set of parameters. Thanks to the recent developments
in inferential procedures, in particular Markov chain Monte Carlo methods, these models
have gained widespread popularity and have been increasingly applied to many machine
learning problems in a wide range of fields, including business, medicine and genetics.
Clustering is one of the problems where the benefits of the Bayesian nonparametric ap-
proach are immediately evident, because there is no more need to specify the number of
clusters in advance of analyzing the data, being it estimated with posterior inference.

In this paper, we will discuss the theory behind the Dirichlet process mixture model and
its application to clustering, starting from the background knowledge necessary for its
understanding. Thus, before presenting the main results concerning the DPMM and its
clustering property, we will discuss the general Bayesian nonparametric framework and
its theoretical foundation, we will analyze in more detail the clustering problem and the
downsides of addressing it with finite-dimensional models, and we will review the Dirichlet
process and the general MCMC scheme. In the final part, after presenting a procedure
for performing posterior inference under the DPMM, we will analyze the sensitivity of the

model to hyperparameters in an application to wholesale customer data.






Chapter 1

Background

1.1 Bayesian Nonparametrics

A statistical problem arises when we observe data, i.e. a collection of random variables
(or random vectors) z, o, ..., T, that are usually assumed to be drawn independently
from some probability distribution F' and there is uncertainty about F'. In order to make
inference about the generative process of the data, we have to assume that the underlying

probability distribution F'is a member of a family of probability distributions

indexed by a parameter 6 from a set ©. Such a family of probability distributions is called

statistical model.

In the Bayesian paradigm, the statistical model is completed with the specification of a
probability distribution, known as prior, on the parameter space ©, i.e. the parameter is
assumed to be a (latent) random variable, thereby specifying the joint probability distri-
bution of the hidden and observed random variables. The objective is to fit the model to
the observed data, i.e. use the observed data in order to get more information about the
latent random parameter, computing the conditional distribution of the latent random
parameter given the observed data, known as posterior. This process is called posterior
inference.

Statistical models indexed by a finite-dimensional parameter 6 are known as finite dimen-
sional or parametric models. A persistent issue about dealing with parametric models is
that in many situations it is not known a priori what the “right” parametric form is and
how complex the model should be in order to sufficiently capture the important struc-
ture of the data without capturing sample-specific unnecessary details. In other words,
in many statistical problems there is high risk of underfitting, overfitting and model mis-
specification. The problems of determining appropriate model families are referred to as

model selection or model adaptation. Examples of such problems are selecting the number
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of clusters in clustering problems and selecting the number of hidden states in Hidden
Markov Models. These problems are commonly addressed by first fitting several models
with different parametric forms and then choosing the best according to model comparison
metrics, including a goodness-of-fit component and a penalty factor that penalizes more
complex models, i.e. models with a higher number of parametric quantities (Claeskens
and Hjort, 2008). However, such comparisons often rely on heuristics, therefore they are
not very robust and when there is no clue about the underlying complexity of the data
there might still be high risk of mis-specification of statistical model.

In such cases, it might be convenient to follow another approach to this problem, which
consists in relaxing the parametric assumptions and defining probability models indexed
by an infinite-dimensional parameter, completed with a prior on the parameter, allowing
for greater modeling flexibility and robustness to model mis-specification. Such models,
known as Bayesian nonparametric models (Ghosal and van der Vaart, 2017), determine
their complexity appropriately from the data, thereby sidestepping the explicit approxi-
mate model selection process, and automatically allow growth in complexity as more data

are observed.

1.2 Clustering and the issue of the number of clusters

Unsupervised learning consists in determining the latent structure that generated the
observed data. In many applications, such as in marketing (Lizbetinova et al., 2019) and
in security (Hodge and Austin, 2004), we might want to partition the observed data into
more homogeneous subgroups. Such a process is defined as clustering. Formally, given a
set of experimental units [n] = {1,...,n} with respective observed data z = (zq,...,z,),
we want to find a partition (cluster arrangement) C,, = {Si,...,Sk} of [n] (K < n),
i.e. subsets (clusters) S; of [n] for any i € {1,..., K} such that S; NS, = () for any
i,i" € {1,..., K} s.t. i ¥4 and Ufil S, = [n], in such a way that there is high similarity
between any two elements in S; for any i € {1,..., K}, and low similarity between any
element in S; and any element in S;, for any i,i" € {1,..., K} s.t. i # i/, according to

some criterion. Equivalently, we can describe partitions by cluster membership indicators,
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by defining ¢; = j if the experimental unit ¢ € S;, for any ¢ € [n], with the convention
that clusters are labeled by appearance of the observations, meaning that ¢; = 1, ¢, =2
for the lowest 75 > 1 such that i, ¢ S|, and so on. There is a one-to-one relation between
C,, and (cq,...,¢,).

The statistical modeling approach to this problem from a high-level perspective consists
in defining a prior on the set of partitions p(C,,), thereby defining a random partition of
the experimental units, and a sampling density p(z | C,,), and then making inference by
finding the posterior distribution of the random partition given the observed data p(C,, |
x) (Miller et al., 2015). The most popular such approach is finite model-based clustering
or finite mizture modeling (Fraley and Raftery, 2002). In finite mixture modeling, we
assume that there is a fixed finite number of clusters H and each cluster h is associated
with a parameter 6, for any h € {1,...,H}. Each observation z; is assumed to be
generated by first generating the cluster membership indicator ¢; € {1, ..., H} and then
generating the observation from the observation distribution F'(- | 6. ). By introducing
the latent categorical variables cq, ..., ¢,, representing the cluster membership indicators,
we implicitly defined a prior on the set of partitions p(C,,). Thus, we have the following

hierarchical model

ind .
L; ’ Ci» (617"‘78H) ~ f( | 061) 1 = 1,...,77,
¢; | (wy,...,wy) ~ Discrete(wy, ..., wy) i=1,..,n

where Discrete(wy, ..., wy) is the multiple-outcome analogue of a Bernoulli random vari-
able, ie. P(¢; = h | (wy,..,wy)) = wy, for h = 1,..., H, completed by a prior
over the mixing proportions wy,...,wy (w, > 0 Vh € {1,...,H}, Zlewh = 1),
w = (wyq,...,wy) ~ W, and a prior over the cluster parameters 6, ..., 05, 0, ...,0y i G-
It is possible that K < H distinct clusters are observed in the data. By defining
S; ={i €[n] : ¢; = j} for any j € {1,..., H}, thereby getting the explicit random
partition C,, = {5y, ..., Sy}, the sampling density is given by

H H

pe|Co= [ { T 76| @}{ 1 Go<9h>}d91 di

j=1i€s; h=1
with the convention that Hiesj flz; 10;)=1if S; =10.
One limitation of this model is that the implied prior of the random partition p(C,,)
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Figure 1.1: Graphical model of finite mixture modeling using plate notation (Buntine, 1994)

has an upper bound on the number of clusters, because it only allows to have up to H
clusters. In some situations, however, we may want to allow the number of clusters to
grow as more data are observed and therefore it would be more natural to approach the
problem with a nonparametric model, in which we assume that the number of clusters
in the population is infinite and that only a subset of such clusters is generated in the
observed finite sample. Another reason for using nonparametric models is that inference
on the number of clusters with these models is much more convenient than working with
finite models with unknown number of clusters, by using complex algorithms for inference
such as the reversible jump Markov Chain Monte Carlo or heuristic approaches consisting
of extensive crossvalidation (Rasmussen, 1999).

The most common nonparametric model for model-based clustering is the Dirichlet pro-
cess mizture model (DPMM). In the next sections, we introduce some concepts that are
necessary for the understanding of the Dirichlet process and the Dirichlet process mixture

model.
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1.3 Dirichlet distribution

We now introduce the Dirichlet distribution, which generalizes the Beta distribution in
the multivariate case (Bilodeau and Brenner, 1999). Let Y7, ..., Y}, be independent random

variables with Y, ~ Gamma(a;, 1), a; > 0, i.e. with density

1

fity) = my"‘fle‘yﬂm (v)

where T' indicates the Gamma function!, for j = 1,...,k. Then, let W = (W, ..., W)
such that

Y; .
W. = 5 . VJ € {]_, ,k‘}

J
Zizl sz

Thus, we have |W| = 1, where |[W| is the [;-norm? of W, and the vector W has density

o Tla) e
fk( ) >_Hf_11“(ai)ilj[1 i ]lAhl( )

where w = (wq, ...,wy,), @ = (aq, ..., ;) and Aj_; is the unit £ — 1 simplex, i.e.

k
A= {w = (wq,...,w) :w; >0 Viel, .. k and Zwi = 1}
i=1

We say W has a Dirichlet distribution with parameters @ = (aq,...,q;) and write
W = (Wy,...,W,) ~ Dirichlet(ay, ..., ). The Dirichlet distribution has some impor-

tant properties.

e Marginal distributions are Beta distributions

Let W = (W, ..., W) ~ Dirichlet(ay, ..., ;). Then
W, ~ Beta(a, |of — ;) Vje{l, .. k}

where a = (ay, ..., ).

1. The Gamma function (for real numbers) is defined as the function I" : R, — R such that I'(z) =

j;-oo t*le tdt VzeR,.
2. For any vector a € R™, we define the I;-norm of a as |a|; = |a| = 2?:1 a;.
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o Aggregation property
Let W = (Wy,...,W,) ~ Dirichlet(ay,...,a;). Then, if for any p € {1,...,k},

1,7, € N are such that 0 <7y <... <r, =k, we have

r T T r T T
(i:Wi, i: Wi, ., z”: WZ> NDiriChlet(iai, 22 Oy voey z”: ai>
i=1 i=ry+1 i=r, 1+1 i=1  i=ry+l i=r, 1 +1
e Decimative property
The converse of the aggregation property is true as well. For example, if W =
(W4, ..., W) ~ Dirichlet(a, ..., ;) and V = (V;, V,) ~ Dirichlet(ay f8;, oy 85) with
By + By = 1, then we have

(Wl‘/la Wl‘/% W27 ceey Wk) ~ DjriChlet(alﬁlv 041,82, Qg ...y ak)

The Dirichlet distribution is at the base of the definition of the Dirichlet process provided
by Ferguson using Kolmogorov’s consistency theorem. Because of this definition, that we
will see later, the Dirichlet process is regarded as the infinite-dimensional analogue of the

Dirichlet distribution.

1.4 Random probability measures, exchangeability and

de Finetti’s representation theorem

The infinite-dimensional parameter in the Dirichlet process mixture model is a random
probability measure whose law acts as a Bayesian nonparametric prior (BNP). In the
specific case, such a random probability measure is the Dirichlet process. We now formally

define this object.

Definition (Random probability measure). Let Py denote the space of probability mea-
sures on R and B(Pg) denote the corresponding Borel o-algebra. Then, any random
element P from some probability space (Q, A, P) and with values in (Pg, B(PR)) is a

random probability measure.
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The random probability measure P can also be described as a stochastic process { P(E) :

E € B(R)}, where B(R) is the Borel o-algebra on R.

Besides the definition of random probability measure, prior to defining any BNP it is
necessary to introduce the notion of exchangeability, which, thanks to de Finetti’s rep-
resentation theorem (Hewitt and Savage, 1955), constitutes a motivation of Bayesian

statistical theory and in particular of the search for Bayesian nonparametric priors.

Definition (Exchangeability). A sequence of (real-valued) random elements (X,,),~, s

(infinitely) exchangeable if for any n > 1 and permutation o of {1,...,n} we have

d
(X17 7X'rL> = (XU(1)7 “"XO'(n)>

i.e. the finite-dimensional distributions of (X,,),>1 are invariant with respect to permu-

tations of its elements.

It is easy to see from the above definition that independence and identity in distribution
implies exchangeability, but the reverse implication is not necessarily true. Exchange-
ability is a plausible assumption (much weaker than iid) in many machine learning and
statistical applications. Moreover, exchangeability is also a crucial property in many al-
gorithms for posterior simulation in the Dirichlet process mixture model. We can now

state de Finetti’s representation theorem.

Theorem (De Finetti’s representation theorem). A sequence of (real-valued) random
elements (X,,),>1 s (infinitely) exchangeable if and only if there exists a probability
measure Q on (Pg, B(Pr)) such that for any n > 1

P, X, 4] = [ [[p(A4)dQ@w) A= (A, x - x 4,) € BR)

The central role of this theorem in Bayesian statistics is due to the fact that, given a
random probability measure P with some distribution @, an exchangeable sequence of
observations is conditionally independent and identically distributed (iid), i.e. this se-
quence can be viewed as a mixture of iid sequences with some mixing distribution @,
known as de Finetti’s measure. Thus, exchangeability implies the existence of a hierar-

chical Bayesian model with latent random probability measure P. This can be written
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as

X, |PEP i=1,..n

P~ Q

for any n > 1. Moreover, the key thing to notice is that ) may not degenerate on a finite-
dimensional subspace of P, i.e. the associated parameterization of probability measures
on R may be infinite-dimensional. Thus, de Finetti’s representation theorem represents

the theoretical foundation of the Bayesian nonparametric approach.

1.5 Dirichlet process

One of the most popular BNP priors where the infinite-dimensional parameter is a ran-
dom probability measure is the Dirichlet process (DP) prior (Miiller et al., 2015). It is
used for density estimation, semi-parametric modelling, sidestepping model selection and

averaging for clustering, topic modeling and other applications. It is defined as follows.

Definition (Dirichlet process). Let M > 0 and G, be a probability measure defined on
R"™ for some integer n > 0. A Dirichlet process (DP) with parameters (M,G,), denoted
as DP(M,G,) or DP(MG,), is a random probability measure G defined on R™ such that
for any integer k > 1 and any finite partition {By, ..., B;} of R™, we have

(G(By),...,G(By,)) ~ Dirichlet( MGy(By), ..., MGy(By,))

It has been proved that such a process exists using Kolmogorov’s consistency theorem

(Ferguson, 1973). A Dirichlet process has then two parameters with important properties:

o (G is called centering measure and is the the “mean” of the process; we have

E[G(B)] = Go(B) VBCR"

e M is called precision or total mass parameter and is like an “inverse-variance” of
the process; we have

Go(B)(1 = Go(B))

VB CR"
1+ M -

Var(G(B)) =
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Figure 1.2: Plot of sample cdf’s from DP(M, G)) with G; = N(0,1) for M = 10 and M = 50 (The
code for the simulations can be found in the GitHub repository https://github.com/luiginoto/

dpmm__clustering)

the larger M, the more G is concentrated about G\,; moreover, as M — 400, the

process degenerates on Gj,.

The product MG, is defined as the base measure of the Dirichlet process. The crucial
property of the Dirichlet process is that the probability law ) of the DP-distributed ran-
dom probability measure G is concentrated on the space of discrete probability measures
on R™, meaning that G is almost surely discrete. Given its discrete nature, we can then

write G as an infinite weighted sum of point masses called atoms
G() =Y wby,, ()
k=1

where wy, w,, ... are the probability weights and d,,(-) is the Dirac measure® at m, i.e.
wy, is the probability assigned to the k-th atom and m,, is the value of that atom. Thus,
the proper definition suggests that the Dirichlet process can be considered as the infinite-

dimensional analogue of the Dirichlet distribution. However, this definition does not

3. For any integer n > 0, the Dirac measure on R™ is defined as

1 fxzeA
0,(A)=14(x) = Ve e R® VACR"
0 ifxz¢ A


https://github.com/luiginoto/dpmm_clustering
https://github.com/luiginoto/dpmm_clustering
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wy = vy

S
wy = va(1 —vy)
]
|
ws = v3(1 —v2)(1 —v1)

Figure 1.3: Stick-breaking representation of the Dirichlet process

provide a constructive representation of the process. Based on the discrete nature of
G ~ DP(M, G,), the so-called stick-breaking representation provides a useful constructive
definition of the process (Sethuraman, 1994). The construction works as follows. The
locations mj, ms, ... are iid draws from G,. Then, we consider a stick with unit length

and divide it into an infinite number of segments w;, ws, ... with the following process.

 Simulate a Beta random variable v; ~ Beta(1, M) and break off a fraction v, of the

stick, i.e. wy = v;.

« For each step k = 2,3, ..., simulate another Beta random variable v, ~ Beta(1, M)

and break off a fraction v, of the remainder of the stick, i.e. w;, = v, H;:ll(l — ;).

Assuming vy, £y Beta(l, M) and m, by Gy for k = 1,2,..., where {v;.},>1 and {m};>;

are independent, the resulting random probability measure
oo
G() =) wydn, ()
k=1

has distribution DP(M, G)). The distribution of the infinite-dimensional random vector
(wy,ws, ...) is the so-called Griffiths-Engen-McCloskey (GEM) distribution with parame-
ter M, written (w, ws, ...) ~ GEM(M).

Another interesting property of the Dirichlet process is that it is conjugate with respect
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to iid sampling, i.e. given the Bayesian model
2, |GEG i=1,..n

G ~DP(M,G,)

the posterior distribution of GG is a Dirichlet process. In particular, we have

M n ~
G ~DP| M —G G
|'T17 » Ly ( +n,M—|—TL 0+M+n n)

where

The posterior DP centering measure is a weighted average of the prior DP centering
measure G\, and the empirical distribution én and the posterior precision parameter
increases to M + n. Using the above result about the posterior distribution of GG, we can

easily find the marginal distribution of the data

o m,) = [ 1] Ge0dQ(G)

where @ is the probability law corresponding to DP(M, G), by writing the above distri-

bution as
n

p(xy) HP(% [ESTRRIE Ay

1=2

and noting that
p(zy) = E[I’(% | G)] = E[G@O] = Go(zy)

and
p(x, |21, .nz, 1) =Elp(z, |z, ....2, 1,G) | &1, ..., 4]
= E[G(’rn> | Ly, "‘Vrn—l]
= @ _— 4]
Since the observations x4, ..., x,, are iid given G, by de Finetti’s representation theorem

the random vector (zq,...,x,) is exchangeable, i.e. the probabilities are the same for
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any permutation of the indices {1,...,n}. From this representation we devise a sampling
scheme for generating z, ..., z,, from an exchangeable sequence whose de Finetti measure

is a Dirichlet process with parameters (M, G,). The procedure is the following

iid

« Generate vy, ..., v,

o Set x; =vy;
e Fori=2,...,n, set

with probability 75—

xq with probability 35—

x;_, with probability ﬁ

\

This sampling scheme is called Blackwell-MacQueen Pdlya urn scheme (Blackwell and
MacQueen, 1973). It is based on the fact that there is a positive probability of ties among
Zq,...,x, because of the almost sure discreteness of G ~ DP(M,G,). The Pélya urn
metaphor is the following: we initially place a ball with a random color in an empty urn;
then, in each step, we have two options, either randomly pick a ball from the urn with
replacement and placing one more ball of the same color, with probability proportional
to the number of balls already in the urn, or place a new ball with a new (random) color
in the urn, with probability proportional to M.

The Blackwell-MacQueen Pélya urn representation will play a central role later to find
the distribution on clusters of the observed data implied by the DP prior in the Dirichlet

process mixture model and to determine the procedure for posterior inference.

1.6 Markov chain Monte Carlo

The greater modeling flexibility of Bayesian nonparametric models obviously comes at a
cost in terms of computational complexity and analytical tractability. A common question

that might arise is how to perform inference (without truncating the model representation)
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in a model with an infinite number of parameters. The answer is that in many such
models, and in particular in the Dirichlet Process Mixture Model, it is possible to integrate
out all but a finite subset of the parameters, so that inference can be performed with
techniques used for Bayesian parametric models, such as Markov chain Monte Carlo
(MCMC) methods. In this section, we will briefly discuss Markov chain Monte Carlo
(MCMC), the Metropolis-Hastings algorithm and Gibbs sampling (Ross, 2014).

We will analyze the discrete case. Some care is needed when moving to the continuous
case, but the intuition from the discrete case is useful. It often turns out that we want
to sample from a random element X with probability mass function 7 on some sample
space X that is difficult to simulate. Moreover, 7 is often known up to a multiplicative

constant, i.e. it is given in the form
m(x) =Cb(z) VreX

where b is a known function and the normalizing constant
1
2 e U(@)

cannot be computed. This is typical when we want to sample from the posterior distribu-

C =

tion of some parameter (or vector of parameters) 6 given the observed data z = (x4, ..., z,,)
in a Bayesian model. In such cases, it is possible to overcome the problem of simulating
X ~ 7 by using the theory of Markov chains.

Let us recall that a probability mass function 7 on a sample space X (m(x) > 0Vz € X
and > _,.m(z) = 1) is a stationary distribution for a Markov chain with state space &

and transition probabilities (P;;); jcq if

n(j) =Y w(i)Py; VieX
i€l
If we could design and simulate an ergodic Markov chain (X,),>, with stationary distri-

bution 7, then by the convergence theorem we would have
P(X,=x2) > 7w(x) as t > 400 Ve € X
and

o €0 TY: X =0}
T—+o0 T

m(x) with probability 1 Vx € X
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so that for large ¢ we can use the Markov chain states as approximate samples from .
The easiest way to obtain a Markov chain with stationary distribution 7 is to design (and
simulate) a m-reversible Markov chain. We recall that a Markov chain with state space X
and transition probabilities (P;;); jcq is reversible with respect to the distribution 7 on
X if
(i) P =7w(j)P; Vi, jeX
The simulation of a m-reversible Markov chain is precisely what the Metropolis-Hastings
algorithm achieves. The idea at the base of the algorithm is to find an irreducible
Markov chain (Y}),> that we can simulate, with state space X" and transition probabili-
ties (Q;;)i jex» known as the proposal distribution, and, given the current state of (X;);-o,
propose a transition according to (Y;),-, that is accepted with some appropriate proba-
bility o and rejected otherwise. Formally, given the current state X, = i, the next state
of the move proposal is determined by drawing a random variable Y ~ p(Y,,, | Y, = 1),
ie.
PY=j|X=i)=PY,,=j|Y,=i)=0Qy Vjel

Then, given Y = j, the move proposal is accepted with some probability «(i, j), in which
case we have X, ; = j, otherwise the proposal is rejected and we have X, | = 4, meaning
that the Markov chain stays in its current state. The resulting transition probabilities of

the Markov chain (X, );>( are given by
P, =PX =7 X, =) =P =j| X, =1d)a(i,j) = Q;ali,j) VijeX

It turns out that the choice of the following acceptance probability

a(i,j) = min (1, 7T<])Qﬂ> = min (1 %) Vi, jeX

ﬂ-(Z)Qij ’ Cb(i)Qz’j
guarantees that the resulting Markov chain (X,),> is m-reversible, therefore the simulated
states can be used as approximate samples from the distribution of interest 7. In fact, we

have

7(i) P,y = (i) Q,; min (1, ”(‘DQJ'") — wmin (1)@, 7))

W(Z)Qij

m(1)Qy; Ry i
m) = W(])Pj- Vi,jeX

= 7(j)Q;; min (1
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Moreover, it can be noticed that C' is simplified in the formula for «(i, j), meaning that
we are able to run the algorithm even when we know the distribution of interest up to
a normalizing costant, which is often the case with posterior distributions in Bayesian

statistics. Thus, we have the following algorithm.

Algorithm 1: Metropolis-Hastings sampling
)ijexs b(x) Vo e X

Output: approximate samples from the distribution 7(z) = Cb(z) Vo € X

Input: transition probabilities (Q,;

1. Initialize X = ¢ for some 1 € X
2. Fort=0,1,...,T — 1 do:

o Given X, = ¢, simulate Y such that

P(Y:j‘Xt:i):Qij VjeX
o Given Y = j, compute «(i,j) = min (1, 2883>

o Set X, ; = j with probability a(¢,j) and X,,; =i otherwise

3. Return X, ..., X

A frequently used version of the Metropolis-Hastings algorithm is Gibbs sampling. In this
case, we assume we want to sample from a random vector X = (X, ..., X,,) with pmf =
on a sample space X known up to a multiplicative constant, i.e. mw(z) = Cb(x) Ve € X
where b(z) is known and C cannot be computed. Moreover, we suppose that for any

i € {1,...,n} and values x_; = (z;);; € X" " we can generate a random variable X

with pmf p(X, | X_, = x_;). The algorithm consists in applying the Metropolis-Hastings
algorithm on a Markov chain with transition probabilities defined as follows. Given the
current state X, = z, an integer ¢ € {1, ...,n} is (uniformly) chosen at random. Given the
choice of i, a random variable X with pmf p(X, | X_, = z_,) is generated. Given X = z,
the candidate state for X, ; isy = (x,...,2;_1,%,%;,1,...,%,). The proposal probability

is then given by
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It turns out that the candidate state y is accepted with probability 1. The Gibbs sampling

procedure will be used later for posterior inference in the Dirichlet Process Mixture Model.



Chapter 2

Clustering with the DP mixture

model

2.1 Dirichlet process mixture model

As stated in Section 1.5, dedicated to the Dirichlet process, the random probability mea-
sure generated by the DP is almost surely discrete. This clearly poses a strong limitation
for this model, since apparently it cannot be used in problems involving continuous distri-
butions, such as density estimation. However, this limitation can be eliminated by using
a DP-distributed random probability measure as the mixing measure of a certain para-
metric form with continuous kernel (Lo, 1984). Let © be a finite-dimensional parameter

space and
F={f(10):0€6}
be a parametric form with continuous kernel, where f(- | ) indicates the continuous
pdf associated with parameter . Then, by placing a probability distribution G on the
parameter space © with Dirichlet process prior, we obtain the mixture pdf of F with
respect to G
fola) = [ (| 0)aG(6)

with G ~ DP(M,G,). By writing the random probability measure G as an infinite

weighted sum of point masses, i.e. G(-) = Z:il wydg: (), then fg becomes

fa(z) = Zwkf(fl? | 0%)
k=1

21
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Figure 2.1: Graphical model of the Dirichlet process mixture model (DPMM) using plate nota-

tion

By introducing observations z; | G s fo for ¢ =1,...,n, the above model is equivalent to

the following hierarchical model

iid

x| 0, ~ f(-]6;) i=1,...,n
0, GXG i=1,..,n
G ~ DP(M, G,)

This model is known as Dirichlet process mizture model (DPMM). The appropriate choice
of continuous kernel depends on the application, but in most cases such mixtures define a
rich family of distributions. An interesting property of this hierarchical model is that the
posterior distribution of the random probability measure G is a mixture of DP models

(Antoniak, 1974). With reference to the above model, we have

M no 5
G | Ly ey Ty ™ /DP (M +n, mGO + M—_H,LGn) dp(gla "'7071 | L1, "'7'Tn)

where
G, =

2%,
1=1

This means that, conditional on 64, ...,0,,, the posterior distribution of G is a Dirichlet

SN

process with precision parameter M + n and un-normalized centering measure MG +

Z?zl 591"
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—— sampled fg
—— pdf centering measure

Figure 2.2: Plot of sample pdf’s fo from a DPMM with z; | 6, Y N(9;,(0.3)2), 6, | G

iid
~ (@, and

G ~DP(2,N(0,1))
2.2 Clustering property of the DPMM

Consider the Dirichlet process mixture model defined in Section 2.1 and denote by [n] =
{1, ..., n} the set of the experimental units associated with the observations = (x4, ..., x,,),
respectively. An important property of the DPMM is that it implicitly defines a proba-
bility model for clustering (Miller et al., 2015). The almost sure discreteness of the DP-
distributed random probability measure G implies a positive probability of ties among

01,...,0,. Thus, we let K <n denote the number of unique values in {6, ...,0,, } and

{9; i1, K}

denote the set of such unique values. Then, given the randomness of 0, | G N G for

1 =1,...,n, we have that

C, = {Sl, ...,SK}
where S; = {i : 0, = 07} for any j = 1,..., K defines a random partition (or clustering)
of the experimental units [n]. In other words, through the definition of the DPMM, we
implicitly defined a probability prior p(C,,) on the set of all possible partitions of [n] and,
together with the sampling density f(- | 6,), we get the infinite-dimensional analogue
of the model-based clustering seen in Section 1.2 (with the DP as prior on the infinite-

dimensional discrete distribution), known as infinite model-based clustering or infinite
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mixture modeling, where we assume that there is an infinite number of clusters in the
population and, on a finite set of observations, only a finite, but varying, number of clusters
is observed. Such a higher flexibility then makes the DPMM very suitable for clustering
applications where we do not know the number of clusters in advance or we assume that
the number of clusters grows as more data are observed. In order to make the implied
model p(C,,) explicit, i.e. find the implied prior probability of each random partition of
[n], it is convenient to use the representation of partitions through the cluster membership
indicators ¢y, ..., ¢,,, labeled by order of appearance, as defined in Section 1.2. In addition
we let n; = |S)] for any j € {1,..., K}, 0} ; denote the j-th unique value in {0,...,0,},
k; denote the number of unique values in {0y, ...,0,} and n, ; = {0, = 0; ; : | = 1,...,i}|
(i < n). By the Blackwell-MacQueen Pélya urn representation of the Dirichlet process,
the probability distribution of the conditional 6, | ,, ...,6,_; for any i < n is given by

k.
M 1 1—1
p(0; [ 04,....0,_1) = mGO(ei) Ry ;”1—1,3‘59;1@(91)

From this expression, it is easy to derive the distribution of the increasing conditionals
(predictive distributions) involving the cluster membership indicators, i.e. ¢; | ¢, ..., ¢; 4

for any ¢ < n, which is given by

i1,
M+i—1

_M
M+i—1

' for y=1,..,k,_4
IP<Ci =] | C1y "'7Ci—1) = '
fOI‘ ]:k1_1+1

By combining the iid assumption on 6, ...,0, and the above conditional probability, we
get the marginal prior probability of each C,, (recall that ¢; = 1 by definition)

_ K
n METE (ny — 1)

p(Cy) =pley, i) = Hp(ci | cpyesiy) = (M +1)(M+n—1)

Such a representation of the distribution of a random partition of [n] by increasing condi-
tionals of the cluster membership indicators is usually called Chinese restaurant process
(CRP), written C,, ~ CRP(M) or (cq,...,¢,) ~ CRP(M), because of the analogy to the
apparently limitless capacity of Chinese restaurants in San Francisco given by Jim Pitman

and Lester Dubins (Pitman, 2006). We suppose there is a Chinese restaurant with an
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Figure 2.3: Example of sample partition from the Chinese restaurant process, where the circles

represent the tables and the numbers around the circles represent the customers

infinite number of tables and each table has infinite capacity. We then imagine there is a
sequence of customers who enter the restaurant one by one and sit at one of the tables.
The first customer enters the restaurant and sits at a table. The second customer enters
the restaurant and sits at the table where the first customer is sitting, with probability
HLM, or at a new table, with probability HLM At each of the following steps ¢, the i-th
customer enters the restaurant and sits at one of the tables with already at least one

customer, with probability proportional to the number customers sitting at that table, or

at a new table, with probability proportional to M.

Finally, we remind that the sequence of latent parameters 6,,...,6,, in the DPMM is

n

exchangeable, therefore, the probabilities are invariant to permutations of the indices of
01,0, Welet§_; = (0;),., € "1, 6, ; denote the j-th unique value in {6, ..., 6, }\{6,},
k_; denote the number of unique values in {6, ...,0,,}\{6;} and n_; ; = {6, = 6", ;: | €

71,]
{1,...,n}\{i}}|. Then, we get

M 1 o
p(0; [0_;) = mGO(Hi) Ry Sne— ;n—i,j(se*i’j(ei)

Alternatively, without highlighting the unique values in the sequence and their multiplic-

ity, we can write p(6, | 0_,) as follows

M 1
p(b; | 6_;) = mGO(0i> to— 8y, (0;)
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2.3 Posterior inference for the DPMM

We now analyze one of the procedures used for posterior inference in the Dirichlet pro-
cess mixture model, considering the model defined in Section 2.1 with experimental units
[n] and observations x = (zq,...,x, ). Although we may be generally interested in the
posterior distribution of all the variables involved in the DPMM, in clustering applica-
tions we are primarily interested in the posterior of the latent parameters 6 = (6, ...,0,,),
p(0y,...,0,, | ©1,...,x,), from which we can analyze the uncertainty associated with the
cluster membership indicators and the number of observed clusters after observing the
data. In fact, our objective is to assign similar observations, i.e. observations with the
same latent parameter, to the same cluster, and therefore we want to use this distribu-
tion to choose the appropriate number of clusters in the observed data. We point out
that, due to the discreteness of the DP-distributed random probability measure GG, exact
computation of posterior distributions and expectations is infeasible when we have more
than a few observations. Thus, we have to resort to approximation methods to sample
from the posterior distribution and compute posterior expectations. The most popular
methods are based on MCMC (Neal, 2000). The direct approach is to simulate a Markov
chain that has the posterior distribution of § = (6,,...,6,) given the data zq,...,z,, as
its stationary distribution. In this way, for a large number of states in the simulated
trajectory of such a Markov chain, the last state of the trajectory is approximately dis-
tributed according to the target posterior distribution. Moreover, all the MCMC samples
after the burn-in period can be used as approximate samples from this distribution. The
easiest approach to simulate such a Markov chain and return the desired samples is to
apply Gibbs sampling with the full conditional posterior distribution p(6, | 6_,, z) for any
t = 1,...,n, obtained by applying Bayes’ theorem

p(0; | 0_;,x) ocp(x | O)p(0; | 0_;)
Knowing that

M 1
PO 105) = 3 =G0+ 3 — ;59].(91)
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the desired posterior distribution is given by

p(0; [ 0_s,2) oc Mrg(z;)Hy(6;) + Zf(fl?z 10;)0.(0;) (2.1)
JF

where H(0;) < f(x; | 6,)Gy(6;) and

rolz;) = / f(x: | 6)Go(d6)

In order for the Gibbs sampling method with such a full conditional distribution to be
feasible, G, must be a conjugate prior for § with respect to the kernel f(- | ), since without
conjugacy rq(z;) cannot typically be computed analytically. The algorithm, based on a
slightly different version of the general Gibbs sampling procedure than the one briefly

presented in Section 1.6, is the following.

Algorithm 2: Gibbs sampling for DPMM
Input: full conditional posterior distribution p(6, | 6_;, x)

Output: approximate samples from the posterior distribution p(é | x)

1. Initialize 6° = (69, ...,602) for some (69, ...,6°) € O"
2. Fort=1,....,T do:
« Fori=1,...n do: draw 6! from p(6, | 6*;', x) as specified in (2.1)

—7

3. Return 6!, ...,67

This algorithm successfully returns the desired approximate samples from the posterior
distribution of # = (6,,...,6,,), from which we can obtain also the approximate samples
from the posterior of the clustering membership indicators ¢ = (¢q, ..., ¢,,) and the poste-
rior of the number of clusters K. However, it has been noticed that this Gibbs sampler
suffers from a slowly mixing Markov chain, meaning that convergence to the target pos-
terior distribution is slow. More efficient algorithms have been obtained by introducing

the cluster membership indicators in the Gibbs sampling procedure.
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2.4 Application: customer segmentation

In this section, we put the previously discussed theory into practice to get a sense of how
it performs when applied to some data!. This application consists of a cluster analysis
to infer the appropriate number of clusters for the data being analyzed. Moreover, we
carried out a sensitivity analysis of the model to the prior parameter specification, i.e. we
observed how the results change by changing the model hyperparameters. The dataset
used is the Wholesale customers dataset of the UCI Machine Learning Repository?. This
dataset is about the customers of a wholesale distributor from the Horeca (Hotel /Restau-
rant/Café) and the Retail channels, distributed in the regions of two large Portuguese
cities, Lisbon and Porto, and a complementary region. There are 6 numerical variables in
the dataset, reporting the annual spending in monetary units (m.u.) of each customer on
various product categories: fresh products (Fresh), milk products (Milk), grocery (Gro-
cery), frozen products (Frozen), detergents and paper products (Detergents_Paper) and
delicatessen (Delicassen). Moreover, there are two categorical variables, indicating each
customer’s channel (Channel) and region (Region) as previously defined.

We focused on the numerical variables for the cluster analysis. After eliminating some
outliers of the 6 numerical variables from the dataset, we got the following summary

statistics and histograms.

Mean | Std. deviation
Fresh 9718 8200
Milk 3989 3261
Grocery 5564 4623
Frozen 1800 1613
Detergents_ Paper | 1841 2207
Delicassen 984 785

From the histograms, it can be seen that the empirical marginal distributions of all the

six variables are quite skewed. However, it was not necessary to apply a logarithmic

1. The code written for this analysis can be found in the GitHub repository https://github.com/

luiginoto/dpmm__clustering
2. The dataset is available at https://archive.ics.uci.edu/ml/datasets/Wholesale4-customers


https://github.com/luiginoto/dpmm_clustering
https://github.com/luiginoto/dpmm_clustering
https://archive.ics.uci.edu/ml/datasets/Wholesale+customers
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Figure 2.4: Histograms of the 6 numerical variables of the Wholesale customers dataset

transformation to the data, since the DPMM is a quite flexible model, providing a rich
family of densities when using common kernels for model-based clustering like the normal
kernel. Moreover, it is not easy to detect a clustering pattern qualitatively by looking at
the histograms, therefore we proceed with the description of the analysis.

In more detail, in this analysis we defined a DPMM on the numerical data and we car-
ried out posterior inference through MCMC. We got the approximate samples from the
posterior distribution of the cluster parameters and the cluster membership indicators
obtained by running the Gibbs sampling algorithm for a sufficiently large number of steps
for convergence to the target posterior distributions. Starting from this samples, at each
MCMC step the number of clusters was observed, thereby obtaining approximate samples
from the posterior distribution of the number of clusters. This was our distribution of
interest, explaining the uncertainty associated with the number of clusters after observing
the data. We estimated it with the relative frequencies obtained from the MCMC samples
(empirical distribution) and chose the Maximum a Posteriori (MAP) estimate as the point

estimation for the number of clusters in the observations. In order to get a sense of the
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sensitivity of the model to the prior parameters, i.e. the parameters of the centering mea-
sure of the DP prior, we performed the analysis more times using prior parameters which
gradually made the prior non-informative (more diffuse) and investigated the variation
in the estimates. The analysis has been carried out in R using the dirichletprocess
package?, an intuitive package for creating Dirichlet process objects and easily running

the Gibbs sampling algorithm.

Univariate case

We first performed the analysis described above in the univariate case, by applying the
model to the Grocery variable. We defined a DPMM with univariate normal sampling
density and normal-inverse-gamma distribution as the centering measure of the DP prior,
since it is the conjugate prior of a normal distribution with unknown mean and variance.

Using the same notation as in Section 2.1, the model is then given by 6 = (u,0?) and

Fls 1) = NGz, | p,0%) = ﬂlﬂ?exp{ —%}

2
Gy(0|v) =N (u | o, Z_o) Inv-Gamma(o? | o, )
where v = (g, kg, g, By) are the model hyperparameters. The model object has been
created with the function DirichletProcessGaussian, getting as input the data and
the hyperparameters v, and the Gibbs sampling algorithm was run for 2500 iterations
by calling the function Fit, which outputs the updated model object with the samples
of the cluster parameters and the clustering assignments. Before running the algorithm,
we scaled the Grocery variable to have zero mean and unit standard deviation. In order
to test the sensitivity of the model to hyperparameters, we performed the analysis with
the following lists of hyperparameters, which gradually make the prior more diffuse, non-

informative:

o case 1: uy=0,ky =1, oy =1, B, = 1; MAP estimate for the number of clusters

equal to 6;

3. The package documentation is available at https://CRAN.R-project.org/package=dirichletprocess


https://CRAN.R-project.org/package=dirichletprocess
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e case 2: puy =0, kg = %, oy =1, By = 5; MAP estimate for the number of clusters

equal to 2;

o case 3: pug =0, ky= %, ay =1, By = 10; MAP estimate for the number of clusters

equal to 2;

o case 4 py =0, kg = ﬁ, ay = 1, By = 100; MAP estimate for the number of

clusters equal to 1.

The results are represented in Figures 2.5 and 2.6.

Case 1 Case 2

Case 3

Figure 2.5: Histogram of the Grocery variable and plot of the DPMM posterior mean and

credible intervals
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Figure 2.6: Approximation of the posterior distribution of the number of clusters (Univariate

case)

Multivariate case
The multivariate case was covered as well. We scaled the data and applied PCA on the

numerical variables. The results are collected in the table below.

PC1 | PC2 | PC3 | PC4 | PC5 | PC6
Std. deviation | 1.64 | 1.16 | 0.91 | 0.83 | 0.57 | 0.37
Cumulative prop. | 0.45 | 0.67 | 0.81 | 0.92 | 0.98 1

Based on these results, we decided to use the first three principal components for the
analysis, explaining 81% of the total variance in the dataset. A scatterplot of these

components is displayed below.

The variables have been modeled through a DPMM with multivariate normal sampling
density. The normal-Wishart distribution has been chosen as the centering measure of
the DP prior, since it is the conjugate prior of a multivariate normal distribution with
unknown mean vector and precision matrix (the inverse of the covariance matrix). This is

equivalent to choosing the normal-inverse-Wishart distribution as centering measure with
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Figure 2.7: Plot of the first three principal components of the dataset

the multivariate normal distribution parametrized by mean vector and covariance matrix.
The model is given by 6 = (u, W), where p is the mean vector and W is the precision

matrix, and

i Lo
flz; 10) = (277)% exp { - 5(% — ) Wz, _M>}

Golp, W | o, ko, v, A) = N(M | Kos (kOW)_1>Wi(W | A, V)

where the vector p, the numbers k; and v and the matrix A are the model hyperparame-
ters. Similarly to the univariate case, the model object has been created with the function
DirichletProcessMvnormal, getting as input the data and the hyperparameters, and the
Gibbs sampling algorithm was run for 2500 iterations by calling the function Fit return-
ing the updated model object. The analysis has been carried out with the following lists

of hyperparameters for sensitivity analysis:

o case 1: pu, equal to the sample mean of the data, k, = 3, v = 3, A = I; MAP

estimate for the number of clusters equal to 5;

o case 2: [ equal to the sample mean of the data, k, = %, v =3, A =5I; MAP

estimate for the number of clusters equal to 3;



CHAPTER 2. CLUSTERING WITH THE DP MIXTURE MODEL

34

o case 3: j equal to the sample mean of the data, ky =

estimate for the number of clusters equal to 3;

« case 4: i, equal to the sample mean of the data, ky = ==

estimate for the number of clusters equal to 1.

Figures 2.8 and 2.9 show the results in this case.
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Figure 2.8: Clustering obtained from the last MCMC sample

v =3, A =10I; MAP

v =3, A =100I; MAP

In this application, we have seen how the DPMM can be used in practice, highlighting the

advantages of using such a sophisticated model but also some potential limitations that

it is important to be aware of. The main benefit of using this model is clearly the fact

that it naturally “formalizes” the process of inferring the number of clusters in the data,

by automatically incorporating the uncertainty about this variable. In this way, we were

able to precisely choose the number of clusters through an estimate from its approximate

posterior distribution. This is not easy when applying finite mixture modeling, because

of the upper bound on the number of clusters in the population. On the other hand, in
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Figure 2.9: Approximation of the posterior distribution of the number of clusters (Multivariate

case)

both the univariate and the multivariate cases, we noticed that the results of the analysis

changed considerably when using different hyperparameters which gradually made the

prior non-informative, showing high sensitivity. Thus, despite the high flexibility of this

model and nonparametric models in general, the choice of the prior parameters might

substantially affect the inference outcome. It is then important to carefully choose the

prior parameters or add an additional layer of uncertainty in the model by introducing

hyperpriors. Nevertheless, it is important to point out that we analyzed a small dataset

and it might be the case that the model would show less sensitivity when working with

datasets of greater size.






Conclusions

To conclude, in this paper we have analyzed the theory behind the Dirichlet process
mixture model and its application to clustering. The objective was to provide a complete
picture about this topic. According to this approach, the theoretical part was structured
in order to cover also the background necessary for a deep understanding of the model. A
practical application of the model has also been described, in order to better understand
the benefits of the model for cluster analysis with respect to its finite counterpart, but
also highlight some potential drawbacks.

Finally, it must be stressed that we had to leave out important results and details of
the covered topics that would be worth mentioning in more extended reports. As for
the inference part, we would have included a discussion on the MCMC algorithms for
dealing with the nonconjugate case in the DPMM and the variational inference algorithms,
representing an alternative to MCMC in Bayesian inference. Moreover, it would have been
interesting to talk about posterior inference with hyperparameters, as well as the concepts
of variation of information and least squares clustering to obtain a point estimation from
the posterior p(C,, | x), that could have been integrated in the practical application to

include a comparison with the output of the k-means algorithm.
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