
DS-GA 1004 Final Project: MovieLens Recommender System

New York University, Center for Data Science

Guilherme Albertini, Giacomo Bugli, Luigi Noto∗

Abstract

We build and evaluate a collaborative-filtering based recommender system with Spark alter-
nating least squares (ALS) implementation1 using the MovieLens dataset2. We compare the
Spark’s parallel ALS model to lenskit single-machine implementation in terms of efficiency
and model performance. Finally, we implement accelerated search at query time using annoy

spatial data structure, and compare this fast search method to the brute force approach in terms
of query efficiency and quality of recommendation.

1 Introduction

Our group aimed to develop a collaborative filter recommender system based on explicit feedback
using the MovieLens datasets (small and full version). We partitioned the data into training,
validation and test sets. The model has been fitted on the training set using PySpark’s alternating
least squares (ALS) implementation, tuned on the validation set and finally evaluated on the test
set. Before developing the collaborative filter we implemented a conventional popularity baseline
model as a standard practice. The popularity baseline has also been fitted, tuned and evaluated
on the same datasets to obtain a baseline score for our collaborative filter.

2 Project Structure Overview

To give the project more of a polish, the authors consulted previous work samples and Open Source
projects to format the online portion of the assignment using packages that would later be sent to
the cluster for worker nodes to access. The shell setup script was slightly modified to include the
zipped package files that will be discussed below.

2.1 Wheel, Dist and Build

To make the code more modular (instead of having a stuffy main routine or mishmash of indepen-
dent scripts) the design choice of packaging modules for the different user-defined classes and data
processing methods better enforced an object-oriented approach. No requirements.txt document
was included as the limitations of installing packages that may be unavailable on certain clusters or
were restricted from being installed through pip made it a burden. Linting and other polishes were

∗Chief responsibilities of: Guilherme - ALS validation, Baseline Code Structure, Report Writing; Luigi - Data
Splitting Algorithm, ALS validation, Extension 2, Report Writing; Giacomo - Data Splitting Algorithm, Popularity
Baseline, Extension 1, Report Writing.

1https://spark.apache.org/docs/3.0.1/ml-collaborative-filtering.html
2https://grouplens.org/datasets/movielens/latest/

1

https://spark.apache.org/docs/3.0.1/ml-collaborative-filtering.html
https://grouplens.org/datasets/movielens/latest/


not implemented due to a non-unanimous vote of confidence regarding their merit. More details
can be found in README.md.

2.2 Dataset Splitting

As for the data partitioning, we thought that the model needed some history of interactions for
each user when being fitted, to avoid the case of getting random embeddings for some users if
they are not represented during training. To make sure this happened, we decided to implement a
time-based partitioning of each user’s history, where the 80% least recent interactions for that user
fall in the training set and the 20% most recent fall in the validation/test set, then interpreting the
observations in the validation/test set as “future” interactions of the users in the dataset. In order
to construct the validation and test set, we considered the fact that the validation set is used for
hyperparameter tuning and the test set is used only at the end to get an estimate of the model’s
generalization performance. Thus, to get a better estimate of generalization performance, we split
the data consisting in the 20% most recent observations of each user in such a way that no user
had observations in both the validation and test set.

2.3 Models

The popularity baseline model and ALS model were called in the main routine using methods
found in their respective packages. Namely, those in the validated models folder contained the class
scripts functioning to select the best model using the validation data and assess performance on the
test set. This way, the user could easily call which parameters could be tested and which dataset
sizes should be considered for a run in the cluster.
The baseline popularity model created a class implementing a standard popularity model, which
gets the utility matrix containing users’ ratings and computes the top most popular movies, where
popularity is defined as the average rating for each movie. For model regularization two hyperpa-
rameters can be tuned, the threshold which determines the minimum number of ratings a movie
should have in order to be considered for the popularity computation, and the damping factor
which is equivalent to adding extra observations with 0 rating. To do so, the class contains a fit
method and an evaluation method. Further details are found in README.md.
The alternating least squares model (ALS) created a class wrapper around the one provided by
Pyspark in order to make a streamlined process of hyperparamter tuning and a more robust way
to evaluate metrics in fewer lines of code in main.py, thereby including evaluate and validate meth-
ods in the ValidatedALS class. The user must simply pass in arrays of hyperparameters for cross
validation, the split datasets generated previously to the ValidatedALS class and select the eval-
uation metric to be considered. The class computes the metrics in the evaluate method using a
RankingEvaluator class in the evaluate method, while in the validate method performs vali-
dation for the sets of parameters provided and returns the model fitted on the best parameter
configuration.

3 Results

3.1 Choosing Evaluation Criteria

When producing a list of recommendations we should aim at reducing the error that we make in
the first few elements rather than treating all the errors with the same weight, since most of the
the users consider only the first couple of recommendations. To achieve this we need a metric that

2



weights the importance of the errors accordingly. We then want a metric that highly penalizes
the errors at the top of the list and gradually decrease the importance of the errors as we go
down the list. With this goal in mind we then considered two metrics to use for model evaluation
and comparison: Mean Average Precision (MAP) and Normalized Discounted Cumulative Gain
(NDCG).
The MAP does this by computing the Average Precision (AP) for each user and then averaging
them. The issue with this metric is that it is unable to handle fine-grained numerical ratings, and
thus when performing evaluation it is necessary to threshold the ratings to make them binary. The
NDCG achieves the same end goal of the MAP but it takes into account the granularity of the
ratings, going beyond the binary case scenario.
Taking this into account we choose the MAP as main metric to perform model evaluation. The
reason behind it is that we are considering the movies in the test set with rating higher than 2.5
as ground truth (hence movies that the user has actually enjoyed) and compute the above metrics
comparing the set of recommendations and such ground truth. Therefore, we are applying a binary
criterion where a movie recommendation is either right (included in the ground truth) or wrong (we
consider movies that the user watched but didn’t enjoy as a wrong recommendation), also taking
into account the order of the recommended movies.

3.2 Evaluation of popularity baseline on small and full datasets

We evaluated the popularity baseline on both the small and full datasets, finding that the baseline
model on the small dataset had an optimal configuration consisting of damping factor of 20 and
the full dataset had an optimal damping factor of 40. The validation has been performed for the
following set of damping factors: [0, 5, 10, 15, 20, 25] for the small set and [10, 20, 30, 40, 50] for
the full dataset version. The best results are shown in Table 1.
From Table 1 we can see that the optimized model had better scores on the NDCG@100 metric over
MAP@100 for both the small and the full data sets. Moreover, we notice that the small dataset
has better outcomes in terms of MAP than the full dataset. The reason behind it may lie on the
metrics used (we highly value correct recommendations early in the list) and the fact that on the
small data set the number of users is much smaller than on the whole set. Therefore, even if there’s
a greater chance to randomly recommend a correct movie on the full data set, we have that the
higher number of users most likely implies a broader difference in tastes, and with less users the
prediction is more likely to be overfitting (we train on all users).

3.3 Latent factor model’s hyper-parameters

Our latent factor model used custom code alongside Pyspark’s Alternating Least Squares (ALS)
model. The parameters we used for model selection were the rank, regularization penalty, and max
iterations allowed until convergence. Other parameter values were left with their default settings.
The rank parameter controls the rank of the factorization; these are the presumed latent or hidden
factors. The regularization parameters vary the penalty scaling the L2 norm sum of the user-factors
vector and item-factors vector for every user-item pair. The max iterations we vary through can
be thought of as the epochs for training. We show resuts of the hyperparamter tuning for ALS in
Table 2.

3.4 Evaluation of latent factor model on small and full datasets

We evaluated the latent factor model on both the small and full datasets, finding the best con-
figurations as displayed in Table 2. The validation has been performed for the following set of

3



Table 1: Validated Best Popularity Baseline Results (No Threshold)

Data Size Damping Factor MAP@100 NDCG@100

Small (Train) 20 0.1023 0.3228
Small (Test) 20 0.0524 0.1073
Full (Train) 40 0.0431 0.1566
Full (Test) 40 0.0493 0.1794

Table 2: Validated Best ALS Results

Data Size RegParam Rank Max Iter MAP@100 NCDG@100

Small (Train) 0.01 30 20 0.1232 0.3541
Small (Test) 0.01 30 20 0.0661 0.1621
Full (Train) 0.1 50 35 0.1795 0.2659
Full (Test) 0.1 50 35 0.0832 0.1973

parameters for the small dataset: rank = [10, 20, 30, 40], regParam = [0.001, 0.01, 0.1, 1], and
maxIter = [10, 15, 20, 25, 30]; while for the full dataset: rank = [20, 30, 40, 50, 60], regParam =
[0.001, 0.01, 0.1, 1], maxIter = [25, 30, 35, 40, 45]. The best results are also shown in Table 1.
From Table 2 we can see that the optimized model had better scores on the NDCG@100 metric over
MAP@100 for both the small and the big data sets. Moreover, we can notice that the big dataset
has better performances in terms of MAP than the small one. This is consistent with expectation
as with the larger dataset the model can train the users and item factors on more observations.

4 Extensions

4.1 Extension 1: Single-Machine Implementation

In this extension, we compared the performances of the PySpark’s ALS parallel implementation
obtained before with the performances of the ALS model on single machine on the same exact
data splitting (train-validation-test). First, to implement the ALS on local we used the library
lenskit3. This library was chosen because it yields a set of tools easily implemented in Python
to mimic parallelized computations on your local machine, and provides great flexibility thanks to
its many interfaces. The code implemented substantially aims at mirroring what we have done on
PySpark, by implementing a wrapper function for the lenskitmethods to perform model validation
and a main routine that calls such function. For the sake of comparison, both implementations
(remote and local) have been validated on the same set of hyperparameters to ensure fair treatment,
and evaluated with the same metrics. The comparison as been conducted both in terms of model
fitting time as function of data size (small and full) and in terms of accuracy using Mean Average
Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG). To time the runs, we
compute the average fitting time over the set of hyperparameters in the validation. This is done for
both implementations in order to obtain more comparable and robust results of models’ efficiency.
For each implementation/data size combinations we show the resulting measures of efficiency and
their respective performance in Table 3.
As we can see the lenskit implementation performs worse than the parallelized version in terms

3More information on how it works: https://lkpy.readthedocs.io/en/stable/index.html

4

https://lkpy.readthedocs.io/en/stable/index.html


Table 3: Single Machine Comparison: Lenskit ALS vs PySpark ALS Results

Data Size Model MAP@100 NCDG@100 Time to Fit (s) Reg Param Rank Max Iter

Small (Test) Lenskit ALS 0.04204 0.06529 0.6912 1 40 10
Full (Test) Lenskit ALS 0.05498 0.04355 245.7438 1 50 30
Small (Test) PySpark ALS 0.0661 0.1621 16.0586 0.01 30 20
Full (Test) PySpark ALS 0.0832 0.1973 398.6661 0.1 50 35

of accuracy for both data sizes, while in terms of efficiency the single machine implementation
performs better than the Spark one on both data sizes. Moreover, as we expected, model fitting
on the small set requires less time on the small data set than on the full one. As regards efficiency
(time to train the model) one of the reasons could lie on the fact that lenskit is specifically
optimized for parallelizing jobs4 on local machine for which the data fit in memory, and that
the modularity of the approach allows to have faster computation. In general we can have that
with very large data sets that exceed single machine’s memory capabilities, Spark offers faster run
time and greater scalability from multi-core parallelism and better execution engine. In terms of
accuracy, both implementations seem to have very similar performances (with PySpark slightly
better than lenskit) differing of a centesimal unit. Further analysis would be required to asses the
two approaches performances as different hyperparameters and larger data sizes are used.

4.2 Extension 2: Fast Search

In this extension, using the user and item factor matrices obtained by fitting the ALS model with the
best hyperparameter configurations on the full dataset, we implemented accelerated search at query
time with the help of a spatial data structure. We then compared the fast search implementation
to the brute-force method, consisting in computing the inner products of the query (user latent
factors) with all the item factor representations and getting the items with the k highest inner
products, where k is the number of recommendations to provide. The annoy5 library, used by
Spotify for music recommendations, has been used to implement the fast search method. It is a
tree-based method for approximate nearest neighbor search, which consists in creating an index
by building a forest of trees, where each tree is constructed in the following way: we pick two
points at random and then split the space by the hyperplane equidistant from those two points;
we then keep splitting each subspace recursively until the number of points associated with a node
in the tree is small enough. At query time, the forest is traversed to obtain a set of candidate
points, among which the the k closest to the query point are returned, where k is the number of
recommendations6. There are two parameters to tune in Annoy that control the accuracy-efficiency
trade-off:

– n trees: this parameter is provided at index build time and affects the building time and
the index size; it consists in the number of trees we build.

– search k: this parameter is provided at query time and affects the search performance; it
consists in the number of total nodes that will be searched; a larger value will give more
accurate results, but will take longer time to return the return the query; if you set this
parameter to a very large value, you may essentially end up with exhaustive search.

4See https://lkpy.readthedocs.io/en/stable/performance.html
5https://github.com/spotify/annoy
6More information on how Annoy works: https://erikbern.com/2015/10/01/

nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

5

https://lkpy.readthedocs.io/en/stable/performance.html
https://github.com/spotify/annoy
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html
https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html


Table 4: Query Methods Comparison: Brute Force vs Annoy

n trees search k Index building time Queries per second Avg Recall

Brute-Force – – – ∼13 1.0
Annoy 100 100 ∼2s ∼18043 0.002
Annoy 100 1000 ∼2s ∼6598 0.016
Annoy 100 10000 ∼2s ∼841 0.196
Annoy 100 50000 ∼2s ∼232 0.635
Annoy 100 100000 ∼2s ∼116 0.865
Annoy 500 100 ∼11s ∼4504 0.002
Annoy 500 1000 ∼11s ∼2737 0.023
Annoy 500 10000 ∼11s ∼588 0.184
Annoy 500 50000 ∼11s ∼189 0.653
Annoy 500 100000 ∼11s ∼105 0.879

In order to highlight the efficiency gains of the fast search method, we produced 100 recommenda-
tions for the first 100 users7 in the dataset using Annoy (with respect to the inner product distance)
with different values of n trees and search k in order to find the right balance in terms of av-
erage recall (the fraction of true nearest neighbors found, averaged over all queries) and number
of queries per second with respect to the brute-force method. Some of the results8 are shown in
Table 4. In particular, three promising configurations are the following: (1) search k = 10000
with about 841 queries per sec and 0.196 average recall, (2) n trees = 100, search k = 50000 with
about 232 queries per sec and 0.635 average recall, (3) n trees = 100, search k = 100000 with
about 116 queries per sec and 0.865 average recall. The first prioritizes efficiency to correctness of
recommendations, being able to generate about 65 times more queries than brute force per sec with
about 20% of correct recommendations (20 out of 100 movies in our case). The third prioritizes
correctness of recommendations, at the expense of having a lower increase in queries per sec with
respect to brute force. The second configuration is between the other two with a more balanced
trade-off. These three configurations show that by using a clever data structure we can increase
query time efficiency by much (depending on our needs) with respect to exhaustive search while
still being able to provide a subset of the “true” meaningful recommendations according to the
estimated user and item embeddings.

5 Concluding Remarks and Future Work

Further hyperparameter tuning would be beneficial using the full dataset in regards to Popularity
Baseline and the ALS models. Due to time and Spark cluster configuration knowledge constraints,
the authors see the most refinements would come from this area. Attempting a random search
for hyperparamter tuning over a grid-search-esque algorithm may also prove more efficient, though
further investigations have to be done to assess its outcomes over the provided nested loop opti-
mization. Regarding the fast search extension, a more comprehensive experiment on all the users
instead of just the first 100 and generating a higher number of recommendations would be bene-
ficial for the comparison to further investigate the efficiency gains. It would also be interesting to

7We did not generate recommendations for all the users in the dataset for this experiment due to resource con-
straints, since the comparison has been run on a local machine.

8For all the results, see fast search results.txt in the github repository.

6



compare the Annoy fast search method to other methods such as NMSLIB or ScaNN and verify
which method turns out to be the most efficient in our application.
It also became quite clear that the authors had limited knowledge of how to properly configure the
Spark cluster (i.e. interactions between Spark, YARN scheduler, JVM, etc.) and were in need of
a lot of technical assistance. Should a more rigorous treatment of the Spark cluster environment
be required prior, we predict that only a fraction of the memory-bound errors experienced would
ever come to be. Though the competition for the authors’ time during these trying last weeks
proved challenging, greater efforts spent on how to best configure the cluster environment (e.g.
by allocating adequate memory to the driver, or computing the number of and memory for each
executor, or tuning the YARM AM container etc), one would expect to see improved job run times
and better maximize cluster throughput. Unfortunately, this detracted from actually building the
basic recommender system.

7


	Introduction
	Project Structure Overview
	Wheel, Dist and Build
	Dataset Splitting
	Models

	Results
	Choosing Evaluation Criteria
	Evaluation of popularity baseline on small and full datasets
	Latent factor model's hyper-parameters
	Evaluation of latent factor model on small and full datasets

	Extensions
	Extension 1: Single-Machine Implementation
	Extension 2: Fast Search

	Concluding Remarks and Future Work

