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Abstract

Search Systems generate search results via multiple stages of incremental modeling
complexity, where the set of candidate items gets progressively narrowed down
and ranked based on some notion of relevance. The last step of this process, the
re-ranking layer, is then aimed at refining the ranking produced in the previous
steps by modeling the cross-item interactions as well as users’ preference behaviors.
In this project we partnered with Zillow Group to improve their search feature by
implementing context-aware personalized re-ranking for home search. We adopt
a self-attention based neural architecture to directly model the mutual influences
between all items in the previously ranked list. The experimental results on
the dataset provided by Zillow demonstrate significant performance gains of the
proposed model with respect to the considered baselines. Finally, we prove that
personalization has a positive impact on the re-ranking problem by conducting a
feature ablation study.

1 Introduction

Search Systems aim at providing an ordered list of several search results from an exhaustive set of
documents that are most pertinent to a user. To overcome the computational limitations that arise
when considering billions of items and users, search systems are usually composed of multiple stages
where, at every step, the number of relevant items is progressively narrowed down to maintain a
system’s low response latency. Following a search query from the user, a candidate set of items is
generated from a large set of documents (Lo & L1 Layers), and a ranking model (L5 Layer) is applied
to display the most relevant documents to the user. In practice, users often compare multiple items on
a result page before generating a click action; thus, information from other items in the same ranked
list could affect a user’s decision on the current item of interest. This usually results in a sub-optimal
rank obtained in Lo due to an inability to model contextual factors, such as users’ intents or mutual
influences between items in the list. Accordingly, an additional component, the re-ranking layer (L3
Layer), is needed to capture these relationships. The re-ranking model should take the ranking list
produced in the previous stage as input and output a new, re-ordered list that considers cross-item
interactions as well as users’ preferences: personalization becomes a desideratum for re-ranking. For
instance, when a user is sensitive to price one would expect that similar items with different prices
should be more aggregated in the list, whereas for users with no obvious purchasing intention items
in the re-ranked list should be more diverse.

Through our partnership with Zillow, our project demonstrated the re-ranking of an initially ranked
list by utilizing the user’s preference behavior and cross-item interactions. To do so, we adopt a slight
adaptation of the PRM (Personalized Re-ranking Model) proposed by [Pei et al.|[2019]. The model is
based on the Transformer self-attention mechanism [Vaswanti et al.,|2017]], and is equipped with a



personalization module to represent user’s preference and intent on item interactions. Moreover, the
self-attention mechanism is used to capture user-specific mutual influences between any two items
without degradation over the encoding distance.

We conducted experiments on the dataset provided by Zillow in different training settings, namely
binary and multi-level relevance as target labels. We show that PRM significantly outperforms the
proposed baselines, including the traditional Learning-To-Rank (LTR) model LambdaMART [Burges|
2010]], thereby improving on the initial ranking generated by Zillow. Moreover, the experimental
results obtained in the feature ablation study demonstrate the effectiveness of introducing user
personalization for the problem of re-ranking.

2 Related Work

Re-ranking constructs a scoring function by encoding item cross-interactions into feature space in an
attempt to refine an initially ranked list generated by the base-ranker. Accordingly, many state-of-the-
art methods for re-ranking directly consider an initial list as input and model the complex dependencies
between items in distinct ways. For RNN-based approaches, such as DLCM [Ai et al., [2018]] and
Global Rerank [Zhuang et al., 2018], the initial list is fed into the RNN-based structure sequentially,
outputting the encoded vector at each time step. In the case of DLCM, a unidirectional GRU is used
to encode the information of the whole list followed by a single decoding step with attention, while
for GlobalRerank an LSTM is used to not only encode information into item representation but also
generate the ranked list by a decoder. The problem with these approaches hinges on the limited ability
to model the interactions between items in the list, since the feature information of the previous
encoded item degrades along with the encoding distance. Following the encoder-decoder structure,
Bello et al.|[2018]] proposed Seq2Slate, a slate optimization framework that uses pointer networks
[Vinyals et al., 2015] to directly predict the ranking of a list of documents by jointly considering their
features together. The use of a sequential decoder ingesting the future state of the item selected in
the current state inhibits the use of parallelization, a construction undesirable to any online ranking
system. To facilitate parallelization, |Ai et al.|[2019] propose Groupwise Scoring Functions (GSFs):
a multivariate scoring framework based on deep neural networks in which the relevance score of a
document is determined jointly by multiple documents in the list. Unfortunately, high computational
costs are incurred from considering all the unobserved counterfactual permutations that have not
actually been displayed to the user when modeling the list-wise context under different permutations.
With these factors in mind, an approach that is most similar to the one we selected is SetRank by
Pang et al.| [2019], which applies a variant of self-attention structure without positional encoding and
dropout to obtain a permutation invariant property. However, we consider permutation invariance
to be an undesirable property in re-ranking problems. In the L3 layer, we want to make use of the
ranking information produced in the previous layer; moreover, we seek to capture the fact that users’
comparison behavior changes based on the items placed next to the current item of interest.

3 Problem Definition and Architecture

3.1 Task

The goal of re-ranking is to construct a multivariate scoring function, taking as input a list of items
from the initial ranking, to model the cross-item interactions. For a specific user search query ¢ € Q,
given the initial list of n items S, = [i1, ..., ,] produced in the L, layer, and the corresponding
relevance labels y € R", the re-ranking problem is to find the optimal ranking function ¢* assigning
to each item in the input list a re-ranking score as

oF = arg;nin Z Ly, o(X,S,))

qeQ

where L is the loss function, X is the feature matrix of all items in the list, and S, is the initially
ranked list. In most re-ranking approaches, only the item features are used to learn the scoring
function; however, they don’t allow modeling for user preferences. For our project, given the focus
on personalization, we consider a personalized matrix PM in conjunction with the item features,
where, for each user, the user-item interactions are encoded by utilizing the user’s search history. In
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Figure 1: Detailed structure of PRM model and its sub-modules. Norm stands for Normalization
layer, FFN for Feed Forward Network, and pe; for learnable positional encoding.

this case, the problem can be rewritten as

¢* = argmin Z Ly, o(X,PM,S,))
q€eQ

where L is the loss function, X is the feature matrix of all items in the list, PM is the personalized
matrix, and S, is the initially ranked list.

3.2 Model Architecture

In this section, we describe the architecture of the adopted self-attention based re-ranking model,
which is a slight adaptation of the PRM model introduced by [Pei et al.| [2019]. The model can be
split into three components: the input layer, the encoding layer and the output layer. Figure[T]shows
the detailed model structure. Each component is described separately in the following subsections.

3.2.1 Inputlayer

The input layer is supposed to produce embeddings for each item in the initial list S, = [i1, ..., %y]
before passing them to the encoding layer, starting from the raw item feature matrix X € R™*dien
and the user-specific personalized matrix PM € R™* %, The first step consists in concatenating X
and PM to produce an intermediate embedding matrix U € R"* (dientdp)

Xi, PV;,
U = [X,PM] =

Xi, PV,

Next, the row vectors of matrix U are normalized using layer normalization 2016],
obtaining another intermediate embedding matrix U’ € R™*(dentdp) The hidden representations
grouped in matrix U’ are then passed through a shared multi-layer feed-forward network of input
size (diem + dpv) and output size de,., where de, represents the input dimension of the encoding
layer, producing a new matrix U” € R"*%n<_ Ag previously mentioned, in the re-ranking problem
we assume that the input list of items is the result of a previous ranking layer. By itself, self-attention
based encoder is permutation-equivariant, and therefore does not discern the order of input items. In
order to use such sequential information, we add learnable positional encodings PE € R™* % to
matrix U”
E=U"+PE

The matrix E € R™*%:x is the final embedding matrix which is passed to the encoding layer.

3.2.2 Encoding layer

The encoding layer is the main component of the model, aimed at modeling the mutual influences
between items in the input list. It is based on the Transformer self-attention mechanism, which fits
well with the re-ranking problem since it is able model the interaction between each pair of items
regardless of the distance between them.



Self-attention mechanism The goal of the attention mechanism is to compare each item in a
list (queries) to a collection of other items (keys) and capture their relevance in the current context
(values). The output of the attention mechanism for a given query is a weighted sum of the value
vectors, where the weights represent how relevant to the query is the key of the corresponding value
vector. We use the so-called scaled dot-product attention, defined as

KT
Attention(Q, K, V) = softmax Q \'%
Vd

where matrices Q, K and V represent queries, keys and values, respectively, and d is the query vector
dimension. Self-attention consists in the attention mechanism where queries, keys and values are all
projected from the same item embedding matrix. In order to model more complex mutual influences,
it is useful to perform the self-attention operation multiple times and combine the outputs. The
outputs are first concatenated and then linearly projected to a lower-dimensional space with respect
to the dimension of the concatenated vector. The entire procedure is called multi-head self-attention
and is described by the following equations

MultiHead(M) = Concat(head, , . . . , head;, )W
head; = Attention( MW@ MWX MWV)

where M € R™* %« is the item embedding matrix passed to the encoder block, W& ¢
Renexda WK ¢ Rdencxdr WV ¢ RbencXdv are the query, key and value projection matrices, respec-
tively, and WO € R"dvXdexc ig the output projection matrix.

Layer structure The embedding matrix E € R™*9%« produced by the input layer is passed through
N stacked encoder blocks, where the input and output dimensions of each block are matched. The
first block gets E as input and each subsequent block gets as input the output of the previous
one. Each encoder block consists in a multi-head self-attention layer with h attention heads and a
position-wise feed-forward network, each followed by residual connections [He et al., 2016[] and
layer normalization, applying dropout before performing summation in residual blocks. We let
Z(N) ¢ R™* 4 be the output of the last encoder block which is passed to the output layer.

3.2.3 Output Layer

The goal of the output layer is to compute a score vector s € R™, where s; represents the re-ranking

score of item %, starting from the encoding layer output ZN) To do so, ZN) is passed through a
fully-connected layer shared across all items, i.e.

s=7ZWNw + :
b

where w € R%<*1 and b € R are the (shared) projection matrix and bias, respectively. The model is
trained in an end-to-end manner by optimizing the ListNet loss [[Cao et al.2007]] defined as

L(s,y) =— Z softmax(y); - log(softmax(s);)

where s are the computed scores and y are the ground-truth relevance labels.

4 Experimental Evaluation

In this section we first introduce the dataset used and the baselines considered for the evaluation.
We then compare the performances of the adopted PRM model with respect to the baselines and the
initial ranking generated by Zillow. Finally, to quantify the importance of user personalization, we
conduct a feature ablation study.



4.1 Data

The experiments have been conducted on the datasets provided by Zillow Group. The datasets are
divided into: users search sessions dataset, user item features dataset, and item features dataset. The
users search sessions dataset contains user search sessions over a day’s span. For each session, we
are provided with a list of items in the order they have been shown to the user as well as the binary
user’s interactions with such items: ySlick, gfaverite "y submit “The y50r jtem features dataset contains the
user-item interaction features (PM), i.e. learned representation of user historic behavior for each

(user, item) pair, while the item features dataset contains the item-specific features (X) for each item.

First, we discard the features in item features dataset for which we observe the proportion of null
values to exceed 20%. For the remaining nulls, we impute them by considering the mode when
the feature class is categorical or the median when the feature class is numerical. Once we made
sure that all datasets didn’t present any null values or further irregularities, joined the users search
sessions dataset with the other two datasets based on unique identifiers, obtaining a single dataset. In
the resulting dataset, each row represents a search query for which we have the list of items in the
order that they have been shown to the user, and for each item we have the item-specific features,
the user-item interaction features, and the corresponding interaction labels. As for dataset statistics,
the obtained dataset contains 1,265,042 unique search sessions with 40 as the maximum length of
the item list (i.e., a maximum of 40 items have been shown to the user following a search query).
For each item, we have 8 user-item interaction features and 59 item-specific features; as these were
anonymized, we were not informed of their actual meaning. Among all sessions, we observe that:
1,121,762 have at least one click interaction, 25,704 have at least one favorite interaction, and 2,472
have at least one submit interaction.

It is important to highlight that we kept the provided timestamp for each search session, as we used
this for the dataset when splitting into train, validation, and test portions. We thus get 60% of the
least recent search queries in the train set, the following 30% in the validation set, and the most recent
10% in the test set.

4.2 Methodology
4.2.1 Baselines

To compare the performances of PRM, three baselines have been selected:

* No Re-rank Refers to the initially ranked list obtained by Zillow’s preexisting ranking
model. We use this to quantify the impact of the additional L3 layer.

* Popularity Refers to the re-ranking obtained by sorting the items based on the click-through
rate, where the click-through rate for each item is defined as the number of times such item
has been clicked over the total number of times it has been shown across sessions. This
allows to have an easy rule-based method to compare to more complex ones.

¢ LambdaMART Traditional LTR method proposed by |Burges|[2010]], an ensemble model
that is built on the MART (Multiple Additive Regression Trees) structure coupled with
the concept of swap values called lambdas. LambdaMART is a widely used method in
commercial search engines.

4.2.2 Evaluation Metrics

To evaluate the performances of the models produced during our work, we used the following metrics:

Normalized Discounted Cumulative Gain (NDCG@Kk) The Discounted Cumulative Gain (DCG)
is a measure of the usefulness, or gain, of a document based on its position in the ranked list. The
gain is then discounted based on the rank of the item in the list. The DCG accumulated at a rank
position k is then defined as

k
rel;
DCG@k = E _
— logy(i +1)

where rel; is the relevance of item in position ¢ of the list. In order to make this measure invariant
to the length of the ranked list, the DCG is normalized by the Ideal Discounted Cumulative Gain



Model Ir n_estimators max_depth N batch_size

LambdaMART le-4, le-2,0.1 200, 300 8,10 - -
PRM (Binary) - - - 4,6,8 128,256

Table 1: Search range per hyper-parameter. For LambdaMART, we consider the learning rate (Ir), the
number of boosted trees (n_estimators), and the maximum depth of each tree (max_depth). For PRM,
we consider the number of encoder blocks (N) and the size of the training batch (batch_size). The
best value is underlined.

(IDCG), which is the maximum possible DCG obtained by sorting the list of documents by their
relevance and computing the DCG. The NDCG formula at a given position k is then given by
DCG@k

NDCG@k = DCG@k

Mean Average Precision (MAP@Kk) The Precision@k is defined as the fraction of relevant
documents in the first k positions of the ranked list. Since Precision is invariant to the order of the
items in the list, we define Average Precision (AP) to weight the items based on their rank. The AP at
a rank position k is then given by

Zle Precision@j - rel;
k
> i rel;

where rel; is a binary relevance. Then the MAP@k for a set of queries Q is the average of the AP@k
over all queries

AP@k =

> AP, @k

MAP@k =
2

4.2.3 Experimental Setup

Regarding the target labels, we considered two different training settings for PRM. With PRM (Binary)
we refer to the model trained on a binary ground-truth relevance based on the click interactions:
rel; = ySik. Conversely, with PRM (Multi) we refer to the model trained on a multi-level ground-truth
relevance constructed as follows: rel; = ysick + 3yfavorite 4 5y submit,

For LambdaMART and PRM (Binary), we performed cross-validation to determine the best parameter
configurations. For PRM (Multi), we used the parameters obtained by tuning PRM (Binary). See
Table [I] for the considered grid. For LambdaMART, the parameters not considered in the grid have
been left to the default values set by the XGBoost implementation of SparkXGBRanker (inheriting
them from the XGBRankerﬂ In all experiments, each PRM encoder block has been configured to
have 8 attention heads (h), 1024 hidden units, and 0.1 as paropour- In the input layer, the hidden sizes
of the Feed-Forward-Network have been set to [512, 1024, 512]. The starting learning rate of the
Adam optimizer is set to 3e-5, with a scheduler halving this every 25 epochs. The PRM max number
of epochs is 250, with an early-stopping patience of 15 epochs.

Data preprocessing and all baselines have been implemented using Spark with a custom singularity
instance on the NYU Greene cluster. Concerning PRM, we followed the PyTorch code-base provided
by [Pobrotyn et al.|[2020]] for multi-GPU training.

4.3 Results

The evaluation results are shown in Table[2] Table 3] and Table[d We compare the performances
of PRM (Binary) and PRM (Multi) against the baselines, on the three different binary interaction
labels (clicks, favorites, submits). We can see how, for all target labels, PRM shows improvements
with respect to the selected baselines in both binary and multi-level relevance training settings. In
particular, from Table [2]it is possible to notice how we have been able to obtain a lift of 2% on the

"https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost. XGBRanker
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NDCG@ MAP@

Model 5 10 15 20 5 10 15 20
No Re-rank 3418 39.82 4324 4535|2779 3057 32.08 32.92
Popularity 2373 2995 3377 3644 | 1791 2075 2232 2331

LambdaMART 28.61 3496 38.69 41.11 | 2254 25.62 27.25 28.20
PRM (Binary) 35.78 41.79 4513 47.21 | 3831 38.22 3747 36.89
PRM (Multi) 35.61 41.62 4496 47.02 | 38.11 38.03 37.30 36.71

Table 2: Ranking metrics computed on the test set for the click labels. All values have been multiplied
by 100.

Model NDCG@ MAP@

5 10 15 20 5 10 15 20
No Re-rank 2735 3371 3752 3993 | 2580 27.75 28.29 28.50
Popularity 18.23 21.44 26.71 30.19 | 15.09 17.77 19.02 19.89

LambdaMART 21.56 24.56 29.12 31.49 | 19.66 21.80 2237 23.04
PRM (Binary) 29.02 36.25 39.89 4238 | 27.74 29.67 30.18 30.12
PRM (Multi) 29.37 36.57 40.26 42.73 | 27.96 29.90 30.21 30.34

Table 3: Ranking metrics computed on the test set for the favorite labels. Only the search sessions
with at least one favorite interaction have been considered. All values have been multiplied by 100.

NDCG @10 (our target metric) with respect to Zillow initial ranking model (No Re-rank case). The
significance of such improvement is supported by the fact that both Popularity and LambdaMART
obtain substantially lower performances with respect to the No Re-rank case, meaning that Zillow
ranking model is already very strong. Tables [3|and ] demonstrate how PRM is able to obtain better
performances also for favorite and submit interactions. See Figure [2]and [3|for a visual representation
of the effect of PRM on the initially ranked list. In both cases, it is clear how after re-ranking the
items in the list based on the score produced by PRM, the most relevant items get positioned at the
top of the list.

4.4 Discussion

Comparing the performances of PRM against the selected baselines, the effectiveness of re-ranking is
unequivocal. Both PRM (Binary) and PRM (Multi) outperform the initial ranker by a considerable
margin for all types of user interaction labels. This shows how the list-wise context and self-attention
mechanism actively encode the user-specific mutual influences between items, generating more
relevant search suggestions. Analyzing the results of PRM on both binary and multi-level training
settings, from Tables 2] and f] we notice that PRM (Binary) is the best-performing model when we
evaluate on click and submit interaction labels, while from Table 3] we notice how PRM (Multi) is
the best-performing model when we conduct the evaluation on favorite ones. The reason for this
might be the increased sparsity of the labels or the fact that we used the best parameter configuration
found in the PRM (Binary) cross-validation for PRM (Multi). Some possible remedies could then be
varying the weights for each type of interaction defined in the multi-level relevance, assigning more
importance to “stronger" signals, and conducting a thorough hyperparameter exploration for PRM
(Multi). Additionally, increasing the amount of training data should help. Due to time constraints, we
leave these further experiments as a possible future direction. Finally, it is worth noticing how the
self-attention method takes into consideration the fact that the input list should already be reasonably
ranked. We can see this in Figure[d] where the highest weights get assigned to the items placed on the
top of the input list, and they get smaller as we descend the list. This indicates that the information
passed from the Lo layer both gets considered by the model in computing the re-ranking scores and
doesn’t get lost.



Model NDCG@ MAP@

5 10 15 20 5 10 15 20
No Re-rank 31.36 36.75 40.50 41.73 | 2826 29.88 31.00 31.29
Popularity 2229 27.64 30.06 3231 | 1724 21.19 22.68 23.44
LambdaMART 25.38 2991 33.07 3493 | 21.89 24.11 2575 2697
PRM (Binary) 39.89 4590 48.51 50.38 | 36.72 38.75 39.26 39.39
PRM (Multi) 39.00 4489 4742 4986 | 3547 37.35 3796 38.38

Table 4: Ranking metrics computed on the test set for the submit labels. Only the search sessions
with at least one submit interaction have been considered. All values have been multiplied by 100.
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Figure 2: Visualization of PRM (Binary) re-ranking results against the No Re-rank baseline for the
top-20 items on 100 randomly sampled test queries. The color encodes the item’s ground-truth binary
relevance based on clicks.

4.5 Feature Ablation

As we believe in the importance of personalization, we conducted a feature ablation study to quantify
the impact of modeling users’ preference behaviour. We investigated whether, and to what degree, it
is beneficial to include both the user-specific personalization matrix PIM and raw item feature matrix
X in the input layer, compared to only considering the raw feature matrix X as input. With PRM, we
refer to the model in which both PM and X are used, while with PRM-ITEM to the model using
only X. For both models we use the best parameter configuration obtained in the cross-validation
highlighted in Table[T]and described in Section[d.2.3] Table[5]displays the results of this experiment.
It is possible to see how, by including the personalized component, we obtain an improvement in
both NDCG and MAP at all levels of k. In particular, with respect to our target metric NDCG@ 10,
we outperform both No Re-rank and PRM-ITEM by 2 percentage points. We can thus state that
personalization has a positive contribution in the re-ranking problem.

5 Conclusions and Future Directions

Utilizing the current state-of-the-art for context-aware re-ranking, we have been able to obtain
improvements in both NDCG and MAP metrics with respect to Zillow’s generated ranking. We have
seen that by including additional information in the target used for training (multi-level relevance)
we obtain slightly lower performances in both NDCG and MAP. This possibly stems from the fact
that the relative weight of each interaction type hasn’t been investigated or that no hyperparameter
fine-tuning has been conducted on PRM (Multi). Finally, the experimental results obtained in the
feature ablation study prove the effectiveness of personalization for re-ranking.
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Figure 3: Visualization of PRM (Multi) re-ranking results against the No Re-rank baseline for the
top-20 items on 100 randomly sampled test queries. The color encodes the item’s ground-truth
multi-level relevance.
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Figure 4: Average attention weights of 8 attention heads of the last transformer block for PRM
(Binary) on the left, and PRM (Multi) on the right.

In regards to future directions, we note that we did not experiment with qualitative metrics such
as novelty, diversity and fairness, which may yield other interesting avenues of investigation for
multi-objective optimization. Moreover, this would pave the way for further personalization, as
different users may have different preferences regarding these more qualitative aspects. In this
case, the need for learning a framework to model the relationship between the multiple objectives
would arise. A solution to it could then be learning a trade-off parameter to weight the different
metrics, or directly use metrics combining multiple objectives like «—NDCG [Clarke et al., 2008]] or
subtopic-recall (S-recall) [Zhai et al., [ 2003].

Another aspect that might be worth looking into is the supervision relevance signal used to train
a re-ranking model. Feedback on item relevance is only available for the displayed initial ranking
lists, not for the remaining n! — 1 configurations (counterfactual lists). Due to the mutual influence
between items in the displayed list, different permutations of the input items may generate different
relevance labels. A popular method used to learn by counterfactual signals is the evaluator-generator
paradigm, where the generator produces feasible permutations and the evaluator gives feedback for
each permutation Xi et al.[[2021].

Finally, we have not explored the "echo chamber" effect studied by |Ge et al.|[2020]] when considering
how recommendations influence user preferences and behaviors. It is possible that users intents
were influenced by repeated exposure to similar suggestions. Different metrics would need to be



NDCG@ MAP@
5 10 15 20 5 10 15 20

No Re-rank  34.18 39.82 4324 4535 | 27.79 30.57 32.08 3292
PRM 35.78 41.79 4513 47.21 | 3831 38.22 3747 36.89
PRM-ITEM 3432 3994 4324 4536 | 2792 3142 32.17 33.08

Model

Table 5: Ranking metrics computed on the test set for the click labels. All values have been multiplied
by 100. Both PRM and PRM-ITEM have been trained on the binary relevance based on clicks.

considered to capture this phenomenon when investigating click, favorite, and submit tendencies over
time.

6 Lessons Learned

Solely relying on native Pandas dataframes when handling large datasets on single machines pre-
sented us with low performance and insufficient memory use. To better extract and manipulate the
dataframe’s underlying vectors in a big data ecosystem, code must be written in a manner more
directly interfacing the cluster. In our case this was done via PySpark, which served as the interface
to the Greene cluster’s Apache Spark. Scalable computing became enough a concern to warrant
the use of distributed computation altogether: we leverage XGBoost PySpark implementation for
the training of LambdaMART, while the other baselines inherently leveraged parallelization in the
Spark ecosystem, all facilitated by the Slurm resource manager. Had we more time (and resources),
implementing distributed training of PRM would’ve been considered in a multi-node, multi-GPU
environment using PyTorch’s Distributed Data parallel library.

We believe this project has been an incredible opportunity to measure our ability of adapting and
learning about a new domain in a short period of time, as well as a great proving ground for the data
science skills we developed throughout our course of study.

7 Student Contributions

Giacomo Bugli Literature review, environment setup for distributed Spark processing and PyTorch
multi-GPU training on GCP, data preprocessing, Popularity and No Re-rank baselines implementation,
PRM implementation, ran model experiments, implemented evaluation pipeline for model testing
and visualization of results, poster creation, report writing, produced presentations to Zillow Applied
Science Team

Luigi Noto Literature review, environment setup for distributed Spark processing and PyTorch
multi-GPU training on GCP, data preprocessing, LambdaMART baseline implementation, PRM
implementation, ran model experiments, implemented evaluation pipeline for model testing and
visualization of results, poster creation, report writing, produced presentations to Zillow Applied
Science Team
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